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Abstract. Isolation by distance (IBD) models are widely used to predict levels of genetic
connectivity as a function of Euclidean distance, and although recent studies have used GIS-
landscape ecological approaches to improve the predictability of spatial genetic structure, few
if any have addressed the effect of habitat continuity on gene flow. Landscape effects on
genetic connectivity are even less understood in marine populations, where habitat mapping is
particularly challenging. In this study, we model spatial genetic structure of a habitat-
structuring species, the giant kelp Macrocystis pyrifera, using highly variable microsatellite
markers. GIS mapping was used to characterize habitat continuity and distance between
sampling sites along the mainland coast of the Santa Barbara Channel, and their roles as
predictors of genetic differentiation were evaluated. Mean dispersal distance (r) and effective
population size (Ne) were estimated by comparing our IBD slope with those from simulations
incorporating habitat continuity and spore dispersal characteristics of the study area. We
found an allelic richness of 7–50 alleles/locus, which to our knowledge is the highest reported
for macroalgae. The best regression model relating genetic distance to habitat variables
included both geographic distance and habitat continuity, which were respectively, positively
and negatively related to genetic distance. Our results provide strong support for a dependence
of gene flow on both distance and habitat continuity and elucidate the combination of Ne and
r that explained genetic differentiation.

Key words: connectivity; effective population size; GIS; habitat continuity; isolation by distance; kelp;
Macrocystis pyrifera; marine dispersal; microsatellites; population genetics.

INTRODUCTION

Knowledge of spatial patterns of genetic differentia-

tion of populations is key to understanding processes

ranging from evolutionary mechanisms of differentiation

to the ecological or conservation consequences of loss of

genetic diversity (Manier and Arnold 2006). The roots of

such knowledge largely emanate from the work of

Wright (1943) on isolation by distance (IBD) and its

relationship to dispersal ability and other life history

attributes (Bohonak 1999). The two general models that

have emerged from this work are the island model

(Wright 1943) and the stepping stone model (Kimura

and Weiss 1964). These models have been thoroughly

compared (Palumbi 2003), but from an ecological and

conservation viewpoint the most important difference

between the two is that geographic distance and

population genetic differentiation are expected to in-

crease together, under some proportional function, in the

stepping stone model. This expectation occurs because in

natural populations migration is often greater between

patches that are near each other (Slatkin 1987). This idea

has profound implications for many disciplines in

biology, especially conservation biology, where a com-

prehensive understanding of the effects of habitat

corridors, barriers, patch size and spacing on population

connectivity and persistence is needed for informed and

effective management.

The spatial structure of genetic differentiation is

commonly modeled using Euclidean distance as a proxy

for population connectivity. Recently, with the advent of

landscape genetics (Manel et al. 2003), there has been an

effort to formally incorporate landscape variables into

analyses of population genetic structure for a variety of

terrestrial plants and animals (for a review, see Storfer et

al. 2007). Several recent studies have used GIS-landscape

ecological approaches to quantify habitat features that

relate to population connectivity (Michels et al. 2001,

Spear et al. 2005, Epps et al. 2007). These studies have

mostly shown that environmental and ecological dis-

tances are better predictors of genetic differentiation

between populations than simple geographic distances,

or revealed cryptic environmental barriers to gene flow.

Surprisingly, few if any studies have used a GIS spatial

framework to address the effect of population size and
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habitat continuity on gene flow, yet these are fundamen-

tal parameters needed to examine gene flow using a

metapopulation framework.

Studies that have incorporated habitat continuity are

almost entirely in non-marine habitats (for exceptions

see Riginos and Nachman 2001, Billot et al. 2003,

Storfer et al. 2007, Leclerc et al. 2008). The challenges

associated with habitat mapping in most marine

systems undoubtedly contribute to this bias. One

marine habitat that is suitable for such a study is

giant kelp (Macrocystis pyrifera) forests which form a

narrow band that fringes the shoreline along the Pacific

coast of temperate North and South America. GIS

distribution data for giant kelp and other marine

species have been available for years, yet the theoretical

expectations linking population size and habitat

continuity with genetic differentiation have never been

empirically explored.

Macrocystis, the world’s largest alga, grows on rocky

reefs in shallow waters (5–30 m water depth) worldwide

(Wormersley 1954). Unlike most species of marine

algae, its fronds extend through the water column and

form a dense canopy at the seawater surface that is

detectable from the air (Fig. 1), making it one of the few

marine species whose adult populations are routinely

geo-referenced (Reed et al. 2006). Although subtidal

rocky habitats often have three-dimensional compo-

nents, the presence of adult Macrocystis populations

fundamentally alters the habitat by providing complex-

ity throughout the entire water column, enhancing local

diversity, productivity, and ecosystem structure and

function (Dayton 1985, Graham 2004, Graham et al.
2007).

In this study, we took advantage of explicit GIS
habitat mapping of Macrocystis pyrifera along the

mainland coast of the Santa Barbara Channel, Cal-
ifornia and the recent development of highly polymor-

phic loci (Alberto et al. 2009) to evaluate the roles of
habitat continuity and spatial distance as predictors of
population genetic differentiation, a proxy for gene flow

connectivity. Our analyses revealed a high dependence
on both factors. We also estimated dispersal and

effective population size using a genetic based simula-
tion model. These results were compared to dispersal

estimates derived from empirical and theoretical dis-
persal models (Reed et al. 2004, 2006, Gaylord et al.

2006), revealing high consistency in dispersal estimates
across genetical, empirical, and theoretical approaches.

METHODS

Macrocystis life history and constraints on gene flow

The kelp life history has unique implications for
population connectivity, namely an alternation of
generations between macroscopic diploid sporophytes,

producing haploid spores, and microscopic haploid
gametophytes, producing gametes. Spore dispersal, the

primary dispersive stage, lasts hours to days and occurs
over transport distances ranging from meters to kilo-

meters (Reed et al. 1992, Gaylord et al. 2002). Following
dispersal spores settle on the bottom and germinate into

microscopic male and female gametophytes. Thus, in
contrast to most marine organisms, fertilization in kelps

occurs after dispersal. A pheromone released by female
gametophytes triggers the liberation of sperm from male

gametophytes and guides the sperm to the non-motile
egg, a process believed to be effective at distances ,1

mm (Boland et al. 1983). Consequently, sporophyte re-
cruitment is largely confined to areas of relatively dense

spore settlement (approximately .1 spore/mm2), with
high probability of sperm–egg encounters to ensure
fertilization (Reed et al. 1991). Thus, spore dilution is a

major constraint limiting kelp dispersal distances over,
non-colonized habitat, a constraint that decreases with

increasing size of the source population (Anderson and
North 1966, Reed et al. 1997). In addition to spore

dispersal, gene flow in Macrocystis may occur over
larger distances via the transport of large fertile

sporophytes that become dislodged and set adrift
(Hobday 2000).

Sample collection and study area

Samples were collected in July 2006 at nine sites along
the mainland coast of the Santa Barbara Channel in

southern California (Fig. 2), these sites have been
regularly monitored since 2001 by the Santa Barbara
Coastal Long Term Ecological Research project. Ap-

proximately 50 sample units, each constituted by a single
Macrocystis blade, were collected haphazardly from

FIG. 1. Macrocystis pyrifera floating canopy (upper panel)
allows the remote detection of patch structure and habitat
continuity using GIS analysis of SPOT satellite images (lower
panel used by permission; CNES 2005, distributed by Terra
Image USA, LLC and SPOT IMAGE).
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different individuals separated by at least 2 m. A 2-cm2

section was excised from the blade, carefully cleaned and

preserved in silica drying crystals.

Microsatellite amplification and scoring

Genomic DNA was extracted with the NucleoSpin 96

Plant Kit (Macherey-Nagel, Düren, Germany). All

individuals were genotyped for 12 microsatellite loci,

for which PCR reactions using forward 50 fluorochrome

labeled primers on a GeneAmp 9700 thermocycler

(Applied Biosystems, Foster City, California, USA)

are described in Alberto et al. (2009). Fragment length

was analyzed on an ABI PRISM 3130 DNA analyzer

(Applied Biosystems) using the GeneScan-500 LIZ

standard. Raw allele sizes were scored with STRand

(program available online)6 and binned into allele classes

using the R package msatAllele (Alberto 2009).

Genetic analyses

Factorial correspondence analysis (AFC, implement-

ed using GENETIX [Belkhir et al. 2001]) was used to

visualize the levels of genetic differentiation among the

giant kelp forests sampled along the Santa Barbara

coast. A synthetic map illustrating the geographic

variation of the first axis of the AFC was generated

with the image function of R (R Development Core

Team 2008).

Departure from Hardy-Weinberg equilibrium was

assessed with the inbreeding coefficient FIS, estimated

with f (Weir and Cockerham 1984), followed by a

probability test of the null hypothesis of random union

of gametes (H0: FIS ¼ 0; Rousset and Raymond 1997).

Levels of differentiation were described by the FST

estimator h (Weir and Cockerham 1984), and significant

departures from H0 of no differentiation were tested for

with an appropriate Fisher exact test using GENEPOP 4

(Rousset 2008). The hypothesis of isolation-by-distance

(IBD; Wright 1943, Rousset 2001), the increase of

genetic differentiation with distance, was analyzed by

the regression between pairwise estimates of differenti-

ation, as FST/(1� FST), and linear distance between sites.

A Mantel test provided by the ISOLDE routine in

GENEPOP 4.0, was used to test the null hypothesis of

no correlation between genetic and geographical dis-

tances between populations. The analysis was repeated

with FST estimates corrected for the presence of null

alleles because when null allele frequency is high, genetic

differentiation (FST) is expected to be overestimated.

The ENA method, implemented by the software Free-

NA (Chapuis and Estoup 2007), was thus used to

estimate the FST matrix corrected for null alleles.

Spatial sampling

We used the California Department of Fish and

Game kelp cover GIS layer to estimate habitat

continuity and geographic distance among pairs of sites

(GIS layer data available online).7 This data layer is a

composite of annual data from 1988 to 2003 and

represents the maximum extent of kelp habitat in the

study region during a time period that is relevant to our

study. The stretch of coastline sampled is a nearly linear

east-west feature with kelp habitat occurring as a series

of discrete patches along the coast (see Fig. 2). Using

this GIS database, we generated a matrix of geographic

distances between all pairs of sites and a matrix of

estimates of the area of kelp in hectares per kilometer of

linear coastline between all pairs of sites, which we

considered to be an estimate of habitat continuity.

Relating genetic distance to habitat continuity

We used a multiple regression approach to assess

models linking geographical distance and habitat

continuity to genetic distance. Unlike approaches that

aim at relating two main matrices of interest while

controlling for the effects of other variables, as in partial

Mantel tests, our regression approach is well suited for

assessing the additive contribution of independent

factors (here geographic distance and habitat continuity)

on genetic distance as the dependent variable (Manier

and Arnold 2006). The key assumptions of multiple

regression analysis were met: (1) bivariate normality

FIG. 2. Synthetic map illustrating genetic differentiation of
Macrocystis pyrifera along the mainland coast of the Santa
Barbara Channel. Colors represent the position of each spatial
location along the first axis of a factorial correspondence
analysis (AFC) of microsatellite alleles (shown below the map).
Points indicate collection sites; sample codes are detailed in
Appendix A. The surface canopy of giant kelp, as detected by
aerial infrared photography in 2003, is shown to illustrate the
level of habitat continuity of giant kelp forests in our study
area.

6 hhttp://www.vgl.ucdavis.edu/informatics/strand.phpi 7 hhttp://www.dfg.ca.gov/biogeodata/gis/mr_nat_res.aspi
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(tested using residual analysis), (2) linear relationships

between both independent factors and genetic distance

(tested using single factor regressions) and (3) non-

colinearity between the independent factors (tested using

tolerance values and condition indices). Four model

outcomes were possible: lack of fit for any model, only

geographic distance was explanatory, only habitat

continuity was explanatory, both geographic distance

and habitat continuity were explanatory. Model selec-

tion followed the relative Akaike Information Criterion,

R-AIC (Burnham and Anderson 1998).

Dispersal and effective population size

To better understand the relationship between effec-

tive dispersal, effective population size, and IBD, we

conducted simulations aimed at estimating the combi-

nations of parameter values that yielded an estimate

similar to our empirically observed IBD slope. This

relationship was estimated using population simulations

based on empirically observed values for habitat

continuity and allelic diversity (our data), and maximum

dispersal and dispersal distribution shape parameters

fitted to represent the current velocities that are found in

these kelp beds (from Reed et al. 2006) and varying

effective population sizes. The approach of comparing

empirically derived IBD slopes with those predicted by

simulations has been used before (Kinlan and Gaines

2003, Palumbi 2003); here we extend it by simulating

much more realistic scenarios where we include multiple

alleles, fragmented habitat, different dispersal distribu-

tion parameters and different population sizes with the

use of a recently developed software IBDsim (Leblois et

al. 2009).

IBDsim uses a coalescent algorithm to derive various

IBD models with continuous or discrete subpopulations.

The simulated metapopulation was represented in a one-

dimension lattice population model, each node repre-

senting one km of coast. Habitat continuity in the study

area was simulated by including empty nodes in the

lattice in areas where GIS analyses showed no historical

presence of kelp. Spore dispersal distribution was

modeled using a truncated variant of the discrete Pareto,

with the probability of moving k steps in one direction

depending on M, the dispersal probability, and on n, the

kurtosis (Leblois et al. 2009). M and n were fitted to

represent the dispersal distributions of spores under four

scenarios of ocean current velocity observed by Reed et

al. (2006) in the study region. Scenarios with higher and

more variable current velocities were simulated with

higher dispersal probability (M ) and lower kurtosis (n).

The number of alleles allowed in the model was 20 (the

average number of alleles observed) and a generalized

stepwise mutation (GSM) model with a 1 3 10�3

mutation rate was chosen. For each current velocity

scenario, we conducted three replicates of 110 simula-

tions with variable population size (22 values from 50 to

2500) and variable maximum dispersal distance (five

values from 12 to 20 km) consistent with Gaylord et al.

(2002). Population size here represents the effective

population size, given IBDsim assumes Hardy–Wein-
berg equilibrium within each node. Each combination of

dispersal distribution (set by M and n) and maximum
dispersal defines a mean per generation parent-offspring

distance (sporophyte to sporophyte), hereafter called
mean dispersal distance, r. In the case of Macrocystis, r
represents the mean distance travelled by spores that
contribute genes to the next sporophyte generation.

RESULTS

Genetic diversity

The microsatellite loci used to genotype Macrocystis

pyrifera samples from the Santa Barbara Channel
revealed high levels of genetic diversity. The total

number of alleles observed per locus ranged from 7 to
50, and on a single population from 2 to 27 at locus Mp-

BC-8 and Mpy-17, respectively. Allelic richness, stan-
dardized for equal sample size for inter-site comparisons

at each locus, was very similar across sites and ranged
from 10.55 to 11.32, at Bulito and Mohawk respectively

(see Appendix A). Null alleles were present, as indicated
by MICROCHECKER analyses (Van Oosterhout et al.
2004) and suspected from the observation of loci that

failed to amplify on some samples even when many
independent reactions were attempted. The loci suspect-

ed to have null alleles and having FIS values higher than
expected under Hardy-Weinberg equilibrium, were not

consistent, across populations with the exception of
three loci more severely affected than others (see

Appendix B). Mean FIS across populations was high
(0.166), but decreased considerably (to 0.092) when

these three loci thought to be more influenced by null
alleles were removed.

Isolation by distance and habitat continuity

A congruent pattern between geographic origin and
genetic relationship was revealed by the factorial

correspondence analysis; the gradation of spatial genetic
differentiation is well represented by the first axis of this

AFC (synthetic interpolated area in Fig. 2). A steep
increase in genetic differentiation was observed in the
eastern portion of the study area between Mohawk and

Carpinteria, corresponding to an area with low kelp
abundance between these sites (Fig. 2). Global and pair-

wise genetic differentiation levels (see Appendix C) were
low but significant (P , 0.001). Global FST estimates

were approximately the same when using the ENA
correction method (0.021) as when using the original

data (0.022). This correction did not affect the isolation
by distance slope value of 0.0003 (Fig. 3A), nor the fit of

the regression model of genetic differentiation with
geographical distance r2 ¼ 0.325. Reducing the data set

from 12 to 9 loci to remove those most affected by null
alleles did not change the IBD slope, but it did decrease

the fit of the regression to r2¼0.25. Accordingly, the best
model relating genetic distance to habitat variables

included both geographic distance, which was positively
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related to genetic distance, and habitat continuity,

negatively correlated with genetic distance (see Appendix

D; Fig. 3A, B). These results clearly point to the

counteracting effects of distance and habitat continuity

in determining the genetic structure of giant kelp

populations; FST increased with distance and decreased

with area of kelp per km between sites. Using AIC

criteria (Appendix D) and an estimate of variance

explained, the fit to the two-term model (r2 ¼ 0.501,

Fig. 3C) was much better than that of both single-term

models (spatial distances r2 ¼ 0.325 and habitat

continuity r2¼ 0.316; Fig. 3A, B, respectively).

Dispersal and effective population size

The simulated effective population size that resulted

in a slope value similar to that found empirically ranged

from 50–700 in scenario D to 800–2500 in scenario A

(Fig. 4). Conversely the mean dispersal distance, r,
ranged from 1.8 to 2.92 km, and from 0.58 to 0.67 km, at

high and low velocity current scenarios, respectively.

The solution set for parameter values yielding the

observed IBD slope showed a clear trade-off between

effective population size and mean dispersal distance.

The overall pattern suggests that if effective population

sizes are small, higher levels of dispersal are needed to

achieve the observed IBD. In contrast, for large effective

population sizes, lower levels of dispersal are necessary

to achieve the solution.

DISCUSSION

In this study we have shown that implicit consider-

ation of habitat continuity improved the capacity to

predict genetic differentiation between patches of the

giant kelp Macrocystis pyrifera along the southern

California coastline, relative to the more common

approach of analyzing genetic distance variation with

geographic distance. We also provide an approach to

quantify the role of habitat continuity on gene flow. Our

results indicate that consequences of habitat fragmenta-

tion on the metapopulation structure of giant kelp are

likely to be severe, which has important implications for

conservation management of this key habitat-forming

species. An additive model that included both geographic

distance and habitat continuity best explained the

variance in pair-wise FST values for patches of Macro-

cystis. That the model was additive indicates that

geographic distance and habitat continuity are both

important factors that operate independently to influ-

ence genetic distance (as noted above distance and

habitat continuity did not covary). Increasing geographic

distance between patches was associated with increasing

genetic distance, while increasing habitat continuity

between patches was associated with decreasing genetic

distance. This relationship makes particular sense for a

species like Macrocystis that occurs in discrete patches

(Reed et al. 2006), which serve as the stepping stones in

the isolation by distance model. Other studies have found

that habitat discontinuities increase genetic differentia-

FIG. 3. Relationships between genetic distance and (A)
geographic distance, (B) habitat continuity, and (C) two-factor
model prediction (geographic distance and habitat continuity).
See Appendix D for statistical output.
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tion in marine environments (Riginos and Nachman

2001, Billot et al. 2003). The innovative aspect here is the

spatial and regression analyses that quantify and predict

the effect of this landscape feature on gene flow.

Importantly, the results of our genetic analyses are

consistent with empirical and theoretical estimates of

spore dispersal in Macrocystis. Reed et al. (2004)

monitored the colonization of unoccupied habitat by

giant kelp at varying distances from the nearest source

population and found the highest densities of sporo-

phyte recruits within a 1–1.5 km interval. Results from a

physical transport model by Gaylord et al. (2006)

indicated that scales of connectivity on the order of 1

km should be representative of most kelp forests. These

values are within the 0.58–2.92 km range that we

estimated for mean dispersal distance r. An important

distinction needs to be made when comparing connec-

tivity estimates derived from metapopulation simula-

tions with those from single source studies such as those

of Reed et al. (2004) and Gaylord et al. (2006). Genetic

connectivity at the metapopulation scale is not entirely

explained by r; a small proportion of emigrant spores

reach distances much larger than the mean dispersal,

and indeed maximum dispersal values in our simulation

are much higher than r. These long dispersed emigrants

can outcross with local spores that settled at sufficiently

high densities to guarantee fertilization, and are

expected to maintain low levels of genetic differentiation

across the metapopulation (Wright 1931, Slatkin 1987).

This is particularly true for giant kelp metapopulation at

the Santa Barbara Channel where an important

proportion of patches may be connected at the dispersal

distances considered here (Reed et al. 2006). Thus the

connectivity estimates from Gaylord et al. (2006), that

modeled the decaying effect of spore densities from a

single source without considering the interaction of

dispersal from different sources, should be taken as an

underestimate of the metapopulation connectivity.

The effective population sizes that explain our IBD

slope (50–2500 per linear km) are much smaller than

adult population sizes at comparable spatial scales in

our study area, which we estimated to be around 26 000

based on a mean adult density of 0.26 (the average over

all nine sites for the period 2001–2008; Santa Barbara

Coastal-LTER, unpublished data) and the mean kelp

area within 1 km stretch of coast (GIS data). Our

estimated range in the ratio of effective population size

to adult population size (Ne/N ) of 0.2% to 9.6% agrees

with the expectations for marine organisms that have

high rates of fecundity and juvenile mortality, which are

expected to have high variance in reproductive success

(Hedgecock 1994, but see Frankham 1995). Population

size fluctuations are another possible cause of low Ne/N

ratios (Frankham 1995) that might play an important

role in giant kelp where space occupation (by sporo-

phyte populations) is very dynamic (Reed et al. 2006).

Given our r estimates, even with a Ne/N ratio below

10%, the metapopulation Ne observed at spatial scales

‘‘effectively’’ connected by gene flow should be much

higher than the subpopulations Ne (Waples 2002). This

may help to explain the high levels of genetic diversity

reported here relative to those previously reported for

kelps (Coyer et al. 2001, Billot et al. 2003, Engel et al.

2008). Migration may thus play a more predominant

role than genetic drift on the dynamics of genetic

diversity at this scale. In fact, even the high multilocus

FIS values suggestive of inbreeding can alternatively be

explained by the incidence of null alleles at some loci, as

its population mean estimates drop to half (0.085) when

the most affected loci are removed.

It has long been known that population genetic

differentiation should be affected by species life history

and environmental attributes affecting dispersal of either

propagules or adults (Wright 1943, Kimura and Weiss

1964, Bohonak 1999). However, environmental attri-

butes have often been modeled under the general proxy

of geographic distance, the main exception to this being

the consideration of dispersal barriers (e.g., Keller and

Largiader 2003, Sumner et al. 2004). Only recently has

there been a surge in studies that formally incorporate

other habitat attributes such as landscape migration

features (Arnaud 2003) and habitat continuity (Shoe-

maker and Jaenike 1997), thereby improving spatial

FIG. 4. Lines A–D are the best-fit solutions (P , 0.00001
for each line) from the IBDsim simulations of parameter values
for effective population size estimated for a spatial scale of 1 km
and mean dispersal distance (r) leading to the observed
isolation by distance slope of 0.0003. The four lines represent
velocity distributions measured in winter and summer at two
study sites (Carpinteria [A, C] and Naples [B, D]) in Reed et al.
(2006). These distributions represent the range in current
velocities characteristic of our study region. Shown is the
measured mean velocity (m/s), for each velocity distribution,
the dispersal probability M, and the kurtosis of the Pareto
distribution, n, that we used to model in IBDsim the dispersal
probabilities in Reed et al. (2006).
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models of population genetic differentiation. In this

study we have been able to combine high resolution

genetic markers with GIS data sets of population

distribution to reveal the role of habitat continuity in

mediating gene flow across distant sites. These results

serve to increase our understanding of giant kelp forest

metapopulation connectivity and have important impli-

cations for their effective management. This type of

GIS-based approach could be further complemented by

incorporating, ecological niche modeling, fine-scale

ocean circulation patterns, and asymmetric gene-flow

analyses.
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APPENDIX A

Macrocystis pyrifera sites sampled along the mainland coast of the Santa Barbara Channel in California (Ecological Archives
E091-006-A1).

APPENDIX B

Inbreeding coefficient (FIS) estimates per locus and population of Macrocystis pyrifera along the mainland coast of the Santa
Barbara Channel in California (Ecological Archives E091-006-A2).

APPENDIX C

Pairwise genetic differentiation, measured as h, FST estimator, between Macrocystis pyrifera sites in the Santa Barbara Channel
(Ecological Archives E091-006-A3).

APPENDIX D

Comparison of models relating geographic distance and habitat continuity to genetic distance (Ecological Archives E091-006-
A4).
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