
Kelp Canopy Biomass, Landsat 5 TM 

Santa Barbara Coastal LTER (2011, 2013)  

Overview:  The Landsat 5 TM sensor has acquired 30 m spatial resolution multispectral imagery 
nearly continuously from 1984 to 2011 on a 16-day repeat cycle (Markham et al. 2004).  TM 
obtains data in 7 spectral bands: blue (450-520 nm), green (520-600 nm), red (630-690 nm), near 
infrared (760-900), shortwave infrared (1500-1750 and 2080-2350 nm), and longwave (thermal) 
infrared (10400-12500 nm).  TM data is stored as 8-bit encoded radiance, with 256 possible 
“brightness values” representing the range of radiance for each band 
(http://landsat.gsfc.nasa.gov/about/tm.html).  We used these images to estimate the canopy 
biomass of giant kelp (Macrocystis pyrifera) canopy along the Pacific coast. The kelp near 
infrared (band 4) radiance signal, while strong compared to that of water, spans only the lowest 
~40 brightness values detectable by TM.  Each Landsat scene covers an area 170 x 180 km; 
Figure 1 gives an example of the extent of a single scene.  During preprocessing, Landsat images 
were geometrically corrected using ground control points and a digital elevation model to 
achieve a scene-to-scene registration accuracy < 7.3 m (Lee et al. 2004).   

 
Methods (extracted from Cavanaugh et al. 2011):  The following describes the automated 
classification process that we developed in order to consistently and efficiently transform these 
images into maps of kelp canopy biomass.  First, a single orthorectified Landsat TM image was 
atmospherically corrected to apparent surface reflectance using an atmospheric transmission 
model (MODTRAN4; Berk et al. 1998).  We used this corrected image as a reference and 
standardized the radiometric signals from all other images to this reference using 50 targets that 
were assumed to be spectrally stable across the time series (i.e. airport runways, highways, sand 
dunes, lakes; Furby & Campbell 2001, Baugh & Groeneveld 2008).  Outliers were manually 
removed to reduce the effects of temporal changes in some of these targets.  This ‘target 
matching’ procedure accounted for all atmospheric, sensor, and processing differences between 
the scenes and created a time-series of standardized TM imagery. 

We estimated kelp canopy abundance from the calibrated Landsat TM reflectance data using 
multiple endmember spectral mixture analysis (MESMA).  Spectral mixture analysis models the 
fractional cover of two or more “endmembers” within a pixel.  Each endmember represents a 
pure cover type, and endmembers are assumed to combine linearly (Adams et al., 1993).  
Standard spectral mixture analysis uses a uniform set of endmembers for the entire image.  One 
challenge in the near-shore marine zone is that the “water” reflectance is influenced by sun glint, 
breaking surface waves, phytoplankton blooms, dissolved organic matter, sediment runoff, etc.   
Since water reflectance is highly variable in space and time, a single water endmember cannot be 
used (Figure 2A).   

Roberts et al. (1998) developed MESMA to allow endmembers to vary on a per-pixel basis.  
By selecting from multiple endmembers for one or more cover types, MESMA can better capture 
the spectral variability of the cover type within an image and through time.  MESMA has been 
extensively used for mapping terrestrial vegetation, include aridland vegetation (Okin et al., 
2001), shrublands (Dennison and Roberts, 2003a), forests (Youngentob et al., 2011), and salt 
marsh (Li et al., 2005).  

 We modeled pixel reflectance as the linear mixture of reflectance from two endmembers: 
kelp and water.  Thirty water endmembers were selected from non-kelp covered areas within 



each TM scene using the endmember selection technique described by Dennison and Roberts 
(2003b).  A single kelp endmember was selected by extracting kelp-covered pixel spectra from 
each image and finding the single spectrum that fit the entire library of kelp spectra with the 
lowest root mean square error (RMSE) (Dennison and Roberts, 2003b).  The pixels in each TM 
image were then modeled as a two-endmember mixture of kelp and each of the 30 water 
endmembers.  The final model (out of 30) chosen for each pixel was the model that minimized 
RMSE when fit to the spectrum of that pixel.  The result of this process was a measure of the 
relative fraction of each pixel that was covered by kelp canopy (Figure 2B).  We used a kelp 
fraction threshold of 0.13 to automate the identification of ‘kelp-covered’ pixels.  The multiple 
endmember process successfully delineated kelp canopy extent under a variety of conditions.  
Figure 2 provides examples of how our technique retrieved kelp fractions from images that were 
contaminated by large amounts of sediment runoff (Feb 23, 2005) and high levels of sun glint 
(July 4, 2006). 

The retrieved kelp fractions were then compared to giant kelp canopy biomass observations 
that were collected by divers at permanent plots maintained by the Santa Barbara Coastal Long 
Term Ecological Research (SBC LTER) project at the Arroyo Quemado and Mohawk kelp 
forests (Figure 1).  The data and the methods used to measure giant kelp canopy biomass from 
diver surveys are described in detail in Rassweiler et al. (2008).  Briefly, divers measured the 
length of all fronds along 5 transects (40 x 1 m) within a plot (40 x 40 m) and converted these 
lengths to biomass using validated length to weight regressions.  Each plot was overlapped by 
four 30 m TM pixels.  For each TM image, we compared the mean kelp fraction of these pixels 
to the diver measured canopy biomass of each plot with a linear regression. 

A strong positive linear relationship was found between the Landsat derived kelp fraction 
index and giant kelp canopy biomass (r2 = 0.64, p << 0.001, df = 94; Figure 3). We restricted our 
comparisons to canopy biomass rather than total biomass because optical remote sensing only 
detects floating kelp.  Generally canopy biomass is highly correlated to total biomass (r2 = 0.92; 
unpublished SBC LTER data); however, the relationship between TM kelp fraction and canopy 
biomass was stronger than between kelp fraction and total biomass (r2 = 0.49, p << 0.001, df = 
94).  This discrepancy was driven by a few data points where the ratio of canopy to total biomass 
was unusually low.  Neither tidal nor current fluctuations had any effect on the kelp 
fraction/canopy biomass relationship (p = 0.65 and 0.25 when the residuals of the fraction-
biomass relationship were compared to local tides and currents for the time of Landsat data 
collection, respectively).  This result agrees with previous work showing that the relatively weak 
tidal fluctuations and current speeds in this area do not affect remote sensing estimates of kelp 
biomass as they do in other locations (Cavanaugh et al. 2010 compared to Britton-Simmons et al. 
2008).  The relationship between satellite derived kelp fraction and diver measured canopy 
biomass (Figure 3) was used to transform images of kelp fractional cover into quantitative, 
validated maps of giant kelp canopy biomass.  These maps are available every 1 to 2 months 
from 1984 to 2011 (where available) and resolve giant kelp canopy biomass on spatial scales of 
30 m to regional scales. The current version of the dataset includes 15 Landsat TM scenes, which 
cover the entire region of dominance for giant kelp in the NE Pacific, roughly Año Nuevo, 
California to Punta San Hipolito, Baja California Sur, Mexico (Figure 4). These scenes are 
compiled into three regions: Central California (Año Nuevo to Pt. Conception), Southern 
California (Avila Beach to San Diego), and Baja California (US/Mexico Border to Punta San 
Hipolito).  
	   	  



 
Figure 1. Landsat 5 Thematic Mapper image displaying study area; Point Arguello, Harvest, and 
Harvest platform buoys; and Long Term Ecological Research (LTER) diver transects at the 
Arroyo Quemado (AQUE) and Mohawk (MOHK) kelp forests. 
	  

	   	  



	  

Figure 2. Examples of the satellite kelp fraction analysis. (A) Landsat false color image of giant-
kelp beds off Santa Barbara coast for (left to right) 23 February 2005, 4 July 2006, and 2 October 
2004. Giant kelp forests are the red patches visible in the water, just off the coast. Note 
variability of water reflectance resulting from sediment runoff in the 23 February 2005 image 
and glint in the 4 July 2006 image. (B) Kelp fraction image output from multiple endmember 
spectral mixture analysis (MESMA). Brighter pixels correspond to higher kelp fractions. The 
slight banding apparent in the water is a known artifact of Landsat TM data.	  
	  

	   	  



	  

	  

	  

Figure 3. Validation of Landsat satellite biomass estimates. Model II linear regression between 
Landsat kelp fractions and diver-measured canopy biomass (kg m–2) measurements for the 
Arroyo Quemado and Mohawk (n = 96) transects. The gray lines represent 95% confidence 
intervals for the relationship. 
	   	  



	  

	  

	  

	  

Figure 4. Landsat TM scene mosaic showing the coverage of this dataset, Año Nuevo, California 
to Punta San Hipolito, BCS, Mexico. 
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