Kelp Forest Community Biomass Time Series Methods

Overview. Little information exists on the biomass dynamics of taxonomically complex communities of marine plants and animals inhabiting shallow reefs. To address this lack of information we estimated the biomass of benthic species of macroalgae, sessile and mobile macro invertebrates and fish in permanent plots on subtidal reefs off Santa Barbara, California by combining time series data of size-specific density or percent cover with taxon-specific relationships between biomass and size for solitary taxa and between biomass and percent cover for taxa that are difficult to distinguish as individuals.

Study Sites. The biomass of > 200 species of macroalgae, invertebrates and fish was estimated at five reefs as part of a long-term experiment designed to evaluate the effects of disturbance to giant kelp on the structure and productivity of the benthic community. The five reefs (Arroyo Quemado 34° 28.048'N, 120° 07.031'W; Carpinteria 34° 23.474'N, 119° 32.510'W; Isla Vista 34° 23.275'N, 119° 32.792'W; Mohawk 34° 23.649'N, 119° 43.762'W; and Naples 34° 25.342'N, 119° 57.102'W) ranged in depth from 5.8 m to 8.9 m (MLLW) and were chosen to represent a range of physical and biological characteristics known to influence subtidal macroalgal assemblages in the region. A common (but not always persistent) feature on these reefs was the presence of the giant kelp, which forms a dense canopy at the sea surface that suppresses recruitment and growth of understory algae below it.

Beginning in 2008, *M. pyrifera* was removed from a 2000 m² plot once per year in early winter at four reefs (Arroyo Quemado, Carpinteria, Mohawk and Naples) to simulate the effects of winter storm disturbance. An adjacent unmanipulated 2000 m² plot served as a control. Beginning in winter 2010, *M. pyrifera* was removed 1 to 2 times per season in a 600 m² area at each of these reefs to create a "continuous kelp removal" plot. In fall 2010 we established a fifth reef site at Isla Vista with 2000 m² annual kelp removal and kelp control plots (a 600 m² continuous kelp removal plot was not established at this site). The experimental removal of kelp ceased in winter 2016 or winter 2017 depending on the site (see Table 1). Data collection in all plots is ongoing.

Reef	Manipulation	First Sampling Date	'08	'09	'10	'11	'12	'13	'14	' 15	'16	' 17	'18 - present
0	Control	January 2008		Not manipulated									
Quemad	Annual removal in winter	January 2008		1 x per year in winter							Not manipulated		
Arroyo	Seasonal removal within annual removal plot	May 2010	1 x yea wii	per ar in nter	2 x j star	per sea rting N 2010	ason Iay		1 x j	per sea	ason		Not manipulated
Ca rpi	Control	January 2008]	Not m	anipul	ated			·

Table 1: Establishment date and manipulation schedule at the five study reefs from 2008 - present.

	Annual removal in winter	January 2008		1 x per year in winter				
	Seasonal removal within annual removal plot	May 2010	1 x per year in winter	r 2 x per season starting May 2010		1 x per season		Not manipulated
ista	Control	October 2011		Not Manipulated				
Isla Vi	Annual removal in winter	October 2011	Not mar	nipulated	1	x per year in winter	Not	t manipulated
	Control	January 2008	Not manipulated					
awk	Annual removal in winter	January 2008	1 x per year in winter					Not manipulated
Moh	Seasonal removal adjacent to annual removal plot	May 2010	Not manipula ted	2 x per season starting May 2010			Not manipulated	
	Control	January 2008	Not manipulated					
ples	Annual removal in winter	January 2008	1 x per year in winter Not				t manipulated	
Ž	Seasonal removal within annual removal plot	May 2010	1 x per year in winter2 x per season starting May 2010		son ay	1 x per season No		t manipulated

Abundance. Divers surveyed the size-specific density or percent cover of benthic macroalgae, sessile and mobile macro invertebrates and fish (cover:

https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-sbc&identifier=28 ; Quad and Swath: <u>https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-sbc&identifier=34</u> ; kelp: <u>https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-sbc&identifier=29</u> ; fish: <u>https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-sbc&identifier=30</u>) within permanent 40 m x 2 m sampling areas (hereafter referred to as transects) located in the center of each plot twice per season (approximately every six weeks) from January 2008 through December 2012 and once per season (approximately every 12 weeks) beginning in the winter of 2013.

Biomass of Macroalgae.

Time series data of the abundance of all understory species including small *M. pyrifera* (< 1 m in height) were converted to dry mass using -taxon-specific relationships with size-specific density or percent cover developed for 23 taxa that accounted for more than 95% of the standing biomass of understory macroalgae averaged across all sampling locations from 2008 to 2018 (algae

biomass relationship data table in <u>https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-sbc&identifier=127</u>). The conversion of abundance to mass for less common taxa was done by proxy using the relationship generated for a morphologically similar species (Table 2).

SP_CODE	GENUS	SPECIES	PROXY SP_CODE	Proxy GENUS	PROXY SPECIES
AMZO	Amphiroa	zonata	BO	Bossiella	orbigniana
ANPA	Anisocladella	pacifica	R	Rhodvmenia	californica
AU	Acrosorium	uncinatum	CF	Callophyllis	flabellulata
BLD	Unidentified brown blade	spp.	MPJ	Macrocystis	<i>pyrifera</i> - < 1m in height
BRA	Branching Red Algae	spp.	R	Rhodymenia	californica
CAL	Calliarthron	cheilosporioid	BO	Bossiella	orbigniana
CG	Cladophora	graminea	RAT	Red Algal Turf	spp.
COF	Codium	fragile	GS	Gracilaria	spp.
СР	Colpomenia	spp.	POLA	Polyneura	latissima
CRYP	Cryptopleura	spp.	BF	Cryptopleura	farlowianum
CZ	Chondracanthus	spinosa	CC	Chondracanthus	spp.
DIAT	Diatom	Mat	EC	Encrusting	coralline
DU	Dictyopteris	undulata	DP	Dictyota	spp.
EC	Encrusting	coralline	EC	Encrusting	coralline
EGJ	Egregia	menziesii	MPJ	Macrocystis	<i>pyrifera</i> - < 1m in height
ER	Encrusting	red	EC	Encrusting	coralline
FASP	Fauchea	spp.	R	Rhodymenia	californica
FG	Filamentous green	spp.	FR	Filamentous red	spp.
FTHR	Neoptilota Ptilota Rhodoptilum	spp.	CF	Callophyllis	flabellulata
GEL	Gelidium	spp.	GS	Gracilaria	spp.
GR	Gelidium	robustum	GS	Gracilaria	spp.
GYSP	Gymnogongrus	spp.	R	Rhodymenia	californica
HAGL	Halosaccion	glandiforme	POLA	Polyneura	latissima
IR	Iridaea	spp.	CC	Chondracanthus	spp.
LI	Lithothrix	spp.	СО	Corallina	officinalis
LX	Osmundea	spectabilis	LS	Laurencia	spp.
NA	Nienburgia	andersoniana	CF	Callophyllis	flabellulata
NEO	Neoagardhiella	baileyi	GS	Gracilaria	spp.
PHSE	Phycodrys	setchellii	R	Rhodymenia	californica
РНТО	Phyllospadix	torreyi	DL	Desmarestia	ligulata
PL	Prionitis	lanceolata	CC	Chondracanthus	spp.
PRSP	Prionitis	spp.	CC	Chondracanthus	spp.
SAFU	Sarcodiotheca	furcata	CF	Callophyllis	flabellulata

Table 2. List of uncommon taxa of macroalgae recorded in permanent plots and the proxy species used to convert their abundance to biomass.

SCCA	Scinaia	confusa	GS	Gracilaria	spp.
SELO	Scytosiphon	lomentaria	DP	Dictyota	spp.
STIN	Stenogramme	interrupta	R	Rhodymenia	californica
TALE	Taonia	lennebackerae	DP	Dictyota	spp.
UBB	Unidentified brown	spp.	BR	Blady red	spp.
	blade				
UEC	Unidentified erect	spp.	CO	Corallina	officinalis
	coralline				
UV	Ulva	spp.	DP	Dictyota	spp.
ZOMA	Zostera	marina	DL	Desmarestia	ligulata

Biomass was converted from de-calcified dry mass to units of wet mass and ash free dry mass for all taxa, using proxy taxa when necessary. Dry to wet mass and dry to ash free dry mass conversions are provided. These ratios did not highly vary among measured taxa and thus those proxy species are not presented here.

Divers also counted the density of *M. pyrifera* fronds ≥ 1 m in height in the 40 m x 2 m transects. The density of *M. pyrifera* fronds ≥ 1 m in height was converted to the biomass of giant kelp by applying month-specific relationships between frond density (no. m⁻²) and dry mass density (dry kg m⁻²) developed by Rassweiler et al. (2018). These relationships allowed us to use our measurements of frond density to estimate total standing biomass of giant kelp in any given month, as well as the individual components of *M. pyrifera* standing biomass, namely: (1) the mass of the surface canopy, (2) the mass of the water column portion of fronds that form a surface canopy, and (3) the mass of young subsurface fronds that have not yet reached the sea surface. The latter is important because the standing biomass *M. pyrifera* consisted entirely of subsurface fronds for at least three months following its removal from our experimental plots. Thus, during the three months following experimental kelp removal we used month-specific relationships between frond density and the mass of subsurface fronds to convert *M. pyrifera* frond density to standing biomass in our experimental kelp removal plots. In all other cases, we assumed a natural distribution of frond sizes in our plots and we estimated *M. pyrifera* biomass using month specific relationships between frond density and the sizes in our plots and we estimated *M. pyrifera* biomass

Biomass of Invertebrates.

Time series data of the abundance of macroinvertebrate species were converted to shell free or decalcified dry mass using taxon-specific relationships with size-specific density or percent cover developed for the 78 most common taxon (invertebrate biomass relationship data table in <u>https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-sbc&identifier=127</u>). The conversion of abundance to mass for less common invertebrate taxa was done by proxy using the relationship generated for a morphologically similar species Table 3.

SP_CODE	GENUS	SPECIES	PROXY SP_CODE	PROXY GENUS	PROXY SPECIES
ANSP	Anthopleura	spp.	URLO	Urticina	lofotensis
APVA	Aplysia	vaccaria	APCA	Aplysia	californica

Table 3. List of uncommon taxa of benthic invertebrates recorded in permanent plots and the proxy species used to convert their abundance to biomass.

ARUD	Discophyton	rudyi	PLUM	Plumularia	sp.
BOW	Amathia	gracilis	TC	Thalamoporella	californica
BRSP	Barentsia	sp.	TC	Thalamoporella	californica
CECO	Centrostephanus	coronatus	SFL	Sebastes	flavidus
COST	Celleporina	robertsoniae	DC	Diaperoforma	californica
CROC	Crisia	occidentalis	TC	Thalamoporella	californica
CUPI	Cucumaria	piperata	LINU	Lissothuria	nutriens
ECB	Bryozoa	spp.	CESP	Cellaria	sp.
HACO	Haliotis	corrugata	HARU	Haliotis	rufescens
HACR	Haliotis	cracherodii	HARU	Haliotis	rufescens
HADE	Halcampa	decemtentaculata	HARU	Haliotis	rufescens
HAKA	Haliotis	kamtschatkana	HARU	Haliotis	rufescens
HC	Acanthancora	cyanocrypta	ES	Demospongiae	spp.
HIP	Primavelans	mexicana	DC	Diaperoforma	californica
HPAC	Heteropora	pacifica	DC	Diaperoforma	californica
LIGS	Lithopoma	spp.	LIGL	Lithopoma	spp.
MISE	Metridium	dianthus	CY	Corynactis	californica
MT	Jellyella	tuberculata	CESP	Cellaria	sp.
MUFR	Muricea	fruticosa	MUCA	Muricea	californica
OBSP	Obelia	sp.	PLUM	Plumularia	sp.
OKL	Orthasterias	koehleri	PGL	Pisaster	giganteus
PHOR	Phoronida	spp.	SABW	Sabellidae	spp.
PHSP	Phyllactis	spp.	CY	Corynactis	californica
PIEL	Pista	elongata	SABW	Sabellidae	spp.
PLAB	Phidolopora	labiata	DC	Diaperoforma	californica
SC	Spheciospongia	confoederata	ES	Demospongiae	spp.
UAB	Bryozoa	spp.	TC	Thalamoporella	californica
UM	Arthropoda	spp.	ATM	Amphipoda	spp.
URPI	Urticina	piscivora	URLO	Urticina	lofotensis
WASP	Phidolopora	labiata	DC	Diaperoforma	californica

Biomass of Reef Fish.

Time series data of the abundance and size of reef fish (i.e., those observed within 2m of the benthos) was converted to wet mass (g) using species-specific relationships obtained from the literature (fish biomass relationship data table in

https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-sbc&identifier=127). For some species, relationships were derived for standard length to mass. In these cases, we used information provided from the author to convert measurements of total length to standard length prior to estimating wet mass. The wet mass of bony fishes was converted to de-boned dry mass (g) and ash free dry mass (g) using the average of conversion ratios for all reef fish provided in Taylor (1997). Wet mass of cartilaginous fishes was converted to dry biomass (g) using the conversion factor of Thorson 1976. No information was found to convert wet mass to ash free dry mass for cartilaginous fishes. Published relationships were not available for every fish

species encountered on SBC LTER reefs. Therefore we estimated the biomass of these species by proxy using the relationship published for a morphologically similar species (Table 4).

SP_CODE	GENUS	SPECIES	PROXY SP_CODE	PROXY GENUS	PROXY SPECIES
AHOL	Alloclinus	holderi	CLIN	Gibbonsia	sp.
BOTH	Bothid	spp.	PCAL	Paralichthys	californicus
CAGG	Cymatogaster	aggregata	EJAC	Embiotoca	jacksoni
COTT	Cottidae	spp.	CNIC	Rhinogobiops	nicholsii
CSTI	Citharichthys	stigmaeus	PCAL	Paralichthys	californicus
CVEN	Cephaloscyllium	ventriosum	HEFR	Heterodontus	francisci
ELAT	Embiotoca	lateralis	EJAC	Embiotoca	jacksoni
EMBI	Embiotoca	spp.	EJAC	Embiotoca	jacksoni
HARG	Hyperprosopon	argenteum	EJAC	Embiotoca	jacksoni
LHIR	Leiocottus	hirundo	OPIC	Oxylebius	pictus
NBLA	Neoclinus	blanchardi	CNIC	Rhinogobiops	nicholsii
SCAL	Squatina	californica	RPRO	Pseudobatos	productus
SCHR	Sebastes	chrysomelas	SAUR	Sebastes	auriculatus
SCSP	Sebastes	spp.	SCAR	Sebastes	carnatus
STRE	Sebastes	serriceps	SCAR	Sebastes	carnatus
XCAL	Haemulon	californiensis	DVAC	Rhacochilus	vacca

Table 4. List of reef fish recorded in permanent plots lack a published relationship between size and mass and the proxy species used to convert their abundance to biomass

References

- Rassweiler, A., D. C. Reed, S. L. Harrer and J. C. Nelson. 2018. Improved estimates of net primary production, growth, and standing crop of Macrocystis pyrifera in Southern California. Ecology 99: 2132.
- Taylor, R. B. 1997. The role of mobile epifauna in subtidal rocky reef ecosystems (Dissertation). University of Auckland.
- Thorson, T. B. 1976. Partitioning of body fluids in the Lake Nicaragua shark and three marine sharks. Investigations of the ichichthyofaunal Nicaraguan lakes. Paper 43.